Αλγεβρικές δομές: Αλγεβρικό σώμα

Από testwiki
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση

Επιστροφή στη Γραμμική Άλγεβρα.

Πρότυπο:ΔΜΟρισμός

Συνήθως μια πράξη έχει ένα όρισμα, όπως η άρνηση στις λογική, ή δύο ορίσματα όπως η πρόσθεση στους αριθμούς. Επιπλέον, το αποτέλεσμα της πράξης δύο ορισμάτων κ στα ορίσματα α και β, δηλαδή η τιμή κ(α,β) συμβολίζεται ως: ακβ

Για παράδειγμα το αποτέλεσμα της πρόσθεσης των αριθμών 1, 2 συμβολίζεται ως τιμή συνάρτησης: +(1,2) Και ως αποτέλεσμα πράξης: 1+2

Πρότυπο:ΔΜΟρισμός

Για παράδειγμα η πρόσθεση είναι μια πράξη στο σύνολο των φυσικών αριθμών. Η πρόσθεση είναι κλειστή, γιατί κάθε άθροισμα φυσικών αριθμών είναι φυσικός αριθμός.

Η αφαίρεση είναι μία πράξη στο σύνολο των φυσικών αριθμών, αλλά είναι ανοιχτή πράξη, γιατί το αποτέλεσμα της αφαίρεσης 1-2=-1 δεν είναι φυσικός αριθμός.

Άλλη πράξη κλειστή ως προς το σύνολο των φυσικών αριθμών είναι ο πολλαπλασιασμός.

Κάθε πράξη είναι χαρακτηριστική του συνόλου

Πρότυπο:ΔΜΟρισμός

Για παράδειγμα στους αριθμούς η πρόσθεση και ο πολλαπλασιασμός είναι αντιμεταθετικές και προσεταιριστικές πράξεις. Ο πολλαπλασιασμός είναι επιμεριστικός ως προς την πρόσθεση, το 1 είναι ουδέτερο στοιχείο και το 0 απορροφητικό.

Η πρόσθεση συμβολίζεται με +, και ο πολλαπλασιασμός με ×.

Πρότυπο:ΔΜΟρισμός

Παρατηρείται ότι για το 0 δεν ορίζεται αντίστροφος, εκτός αν 0=1, αλλά τότε a=0 για κάθε a.

Αφαίρεση είναι πρόσθεση με τον αντίθετο. Διαίρεση είναι πολλαπλασιασμός με τον αντίστροφο.

Για παράδειγμα 2+(-2)=0, άρα 4-2 είναι αφαίρεση.

Αλγεβρικά σώματα

Πρότυπο:ΔΜΟρισμός

Στα αλγεβρικά σώματα η αφαίρεση και η διαίρεση είναι κλειστές ως προς τη δομή. Τα απορροφητικά στοιχεία εξαιρούνται, γιατί δεν ορίζεται διαίρεση για αυτά.

Παράδειγμα ενός αλγεβρικού σώματος είναι το σύνολο των ρητών αριθμών με την πρόσθεση και τον πολλαπλασιασμό:

a+b=b+a
a×b=b×a
(a+b)+c=a+(b+c)
(a×b)×c=a×(b×c)
(a+b)×c=(a×c)+(b×c)
a×0=0
a×1=a
ab
b0,a/b

Συνήθως οι δύο πράξεις στα αλγεβρικά σώματα ονομάζονται πρόσθεση και πολλαπλασιασμός, διατηρούν τα ίδια σύμβολα και συνδέονται μεταξύ τους με τις παραπάνω ιδιότητες.

Το σύνολο των φυσικών δεν είναι αλγεβρικό σώμα, γιατί δεν περιέχει το στοιχείο 1-3. Το σύνολο των ακεραίων δεν είναι αλγεβρικό σώμα, γιατί δεν περιέχει το στοιχείο 1/4.

Άλλο αλγεβρικό σώμα είναι το σύνολο των πραγματικών αριθμών και το σύνολο των μιγαδικών αριθμών.